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NeuroFAST: On-Line Neuro-Fuzzy ART-Based Sructure  gions of extreme nonlinearities, a new fuzzy rule is created wherever

and Parameter Learning TSK Model the output error exceeds a dynamic threshold. At the same time, all
adaptive parameters are tuned by gheile. The proposed algorithm
Spyros G. Tzafestas and Konstantinos C. Zikidis is an extension to [18], where a fuzzy ARTMAP [25] module was em-

ployed. A more technically detailed presentation of the proposed archi-

. . i ) . tecture appears in [9].
Abstract—NeuroFAST is an on-line fuzzy modeling learning algorithm, The performance of NeuroFAST is verified by two examples: the
featuring high function approximation accuracy and fast convergence. It is ’

based on a first-order Takagi-Sugeno—Kang (TSK) model, where the conse- fuzzy mo_deling of a nonlinear function and the prediction of the Box
quence part of each fuzzy rule is a linear equation. Structure identification ~and Jenkins gas furnace process [21], a famous benchmark for system

is performed by a fuzzy adaptive resonance theory (ART)-like mechanism, identification algorithms, where NeuroFAST exhibits outstanding per-
assisted by fuzzy rule splitting and adding procedures. The well know®  f5rmance over other existing methods.

rule continuously performs parameter identification on both premise and

consequence parameters. Simulation results indicate the potential of the

algorithm. It is worth noting that NeuroFAST achieves a remarkable per- Il. PRESENTATION OFNEUROFAST
formance in the Box and Jenkins gas furnace process, outperforming all . . . .
previous approaches compared. It is assumed that the input and output variables are known. In this

study, issues concerning the choice of input variables from all possible
variables are not dealt with. For discussions on this subject the reader
is referred to [5], [13], [16], and [32].

Index Terms—é rule, fuzzy ART learning, structure/parameter identifi-
cation, Takagi—Sugeno—Kang (TSK) fuzzy reasoning model.

|. INTRODUCTION A. General Description and Basic Concepts

Fuzzy set theory [1] was initially proposed as a tool for the expres- | '€ core of the present system is the TSK model [4], namely a set

sion and manipulation of human-like, expert knowledge. Combin& IF--- THEN rules with _fuzzy implications and firs?-order functiopal
with the learning ability of artificial neural networks, it was provedconseguence parts, which was proved to be a universal approximator

to be a powerful mathematical construct, enabling the symbolic e26]- The format of the fuzzy rul&; is

pression of machine learning results. In the last few years, the applica-
tion of neuro-fuzzy methods to nonlinear process identification using
input—output (I/0) data is a very active area. A comprehensive survey theny: = cio +cozr + -+ cimrnr.
can be found in [2], with a plethora of references.

One of the most influential fuzzy reasoning models was proposg

Ri: If 21 isA;; AND ... AND znr iS A

The number of rules is determined by the user, depending on the task

. . . d the available or expected training data. The algorithm creates linear
by Takagi and Sugeno in [4]. In this model, the consequent part Rlodels that approximate locally the function to-be-learned. Structure

each fuzzy rule is expressed as a linear function of the input Vanabl%séntiﬁcation sets a coarse fuzzy partitioning of the domain, while pa-

|n_stead of afuzzy set [3], r_educmg the number_ of requwed_ fuzzy ruler imeter identification optimally adjusts premise and consequent pa-
Since then, Sugeno and his colleagues established what is called tor MNoters

thiTakag;iggf:O_.:](aorlfg;}(i?%?erlé%n[g]' arameter identification A modified fuzzy ART mechanism [19] is employed for domain
uzzy g InNvolv uctu P ' tcatl artLtioning. The idea of utilizing fuzzy ART concepts for structure

The second is usually (and easily) addressed by some gradient desgen ing was introduced by Liet al. [22]-[24]. Fuzzy ART is an un-

; . . éar
variant, e.g., the least squares algorithm or back-propagation. Str%'ﬁ’bervised algorithm, which receives a stream of input patterns and au-

:lrji;? ;c:%ngl;lr(;a;t:n ;zik:gzr?ilgftnt:::l:r:g?;ée%f;ir;;iﬁ:ﬁ?ort:)['s?f{'?"]ng‘tr?maticalIy creates recognition categories or hyperboxes. These recog-

pp ' ess criterion [}, /1. Dfgq categories start as points in the input space and increase in size to
of the most common methods for structure initialization is uniform . : !
L . : . . incorporate new points that are presented, until the whole input space
partitioning of each input variable range into fuzzy sets, resulting to.

. . . 4 i€ covered. The maximum size of these hyperboxes and implicitly the
fuzzy grid. T.h's apprpach is followed in ANFIS, a well-known TSKnumber of the required hyperboxes can be adjusted by a parameter
model learning algorithm [8]. In [10]-[12], [20] the TSK model was e B : . :
used for designing various neurofuzzy controllers called “vigilance.” In our case, the input stream is formed by the input

In the proposed approach, the human way of thinking is exploi variable vector at every time step. The (crisp) hyperboxes are fuzzified,

. L . 2% oviding the implications of the fuzzy rules.
as much as possible, and is incorporated into an automated proce urg;

: ) . . uzzy ART does not allow for any dependence on the output error,
NeuroFAST is a fuzzy ”?Ode"”g learning algorithm b_ased_ on the TS$<nd results into a more-or-less uniform hyperbox allocation. This is
model and features on-line structure and parameter identification, VY desired. because the function-to-be-learned is not assumed to ex-

good numerical accuracy and fast convergence, for use in SUPEIVISERit uniform “difficulty” in its whole domain. To help the algorithm

real tlme.f_unctlo_n approximation task_s. The mpgt space Is automa}gém betterin “hard” areasfazzy rule splittingechnique is employed:
cally partitioned into fuzzy subsets, using a modified fuzzy ART (ada eriodically, all rules are examined and the rule with the worst local

tive resonance theory) [19] mechanism. Fuzzy rules that tend to give . . L T,
. . o o performance index is split in two rules. By “split” it is meant that the
high output error are split in two, by a specific fuzzy rule splitting pro;

cedure, resulting in fuzzy k-d tresstructure. To cope with “hard” re- _hyperbox associated with tht_e fu_zzy implication of th_e rule_ is divic_:led
! ) into two hyperboxes, afterguillotine cutacross one dimension. This
results to duzzy k-d treestructure. The question that arises is across
Manuscript received January 16, 1998; revised May 31, 2001. This paper wéich dimension the cut should be made. Various strategies have been
recommended by Editor K. Pattipati. proposed, including thealanced sampling criteriofiL5], direct eval-
oy e o ot Eoapan g oot N Toapion 5] andregiona Inearty[15), emploe n the proposed ap
L(J)r?i/\’/ersity of Athens, Atr?ens, Grgece (e-?nail:ptzafesta@softlab.ece.ntua.@?,oa(?h' The fuzzy r_ule splitting procedL_lrg adds t(? the algorl.thm com-
kzikidis@softlab.ece.ntua.gr). putational complexity and overhead; this is the price for on-line struc-
Publisher Item Identifier S 1083-4419(01)08545-4. ture identification.
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Apart from fuzzy rule splitting, another procedure fizzzy rule than a small fixed threshold, e.g., 0.001, are activated and take part in
adding a new rule is created wherever the output error exceeds a higltput calculation and weight updating. All other nodes remain idle

threshold. and are ignored. The sum of all rule firing strengths is defined as
After all available rules have been used, the rule splitting and adding S(x) = M (x)
procedures are terminated. However, fuzzy ART learning remains ac- X = Z Mi(x).

all activated rules

tive as a “watchdog,” preventing uncovering of the input space.sThe ) ) )
rule, which is active from the beginning, continues and fine tunes allf 5(x) is zero (which means that there are no active rules), the al-
parameters, until the algorithm reaches some stopping criterion. ~ 90rithm imperatively performs fuzzy ART learning (hyperbox expan-
The presentation of the algorithm will be made through a multi-inpOr/creation) to incorporate this “new” input vector. In order to pre-
single-output example. A certain familiarity with the fuzzy ART modeY€nt Possible uncovering of input space, fuzzy ART learning is called

[19] is assumed. for even if S(x) is below a certain level (set to 0.1).
2) Fuzzy ART Learning:During the first learning stage or when-
B. Adaptive Parameters ever the sum of the rule firing strengths is low, the fuzzy ART mecha-

. . . . . nism operates as follows [19].
The adaptive parameters are: the weights associated with the MeME - hoice functionof every committed node is calculatel A

bership functions (which will be called input weights), the slopes q}:/' (a + |wi|). The node with the highest choice value is selected.

the membership functions, and the weights of the consequence PARode i is selected, thenatch functionjx A wi|/[x| is calculated.

of the rules (which will be called output weights). At the beginningrhis value is compared to the vigilangelf [x A wi|/M < p, mis-
there areNV uncommitted or available nodes (each node corresponrq] . '

toah b f bset and af le) S that th tch resebccurs, the choice value of this category is setfig and a
0 anyperbox, a Iuzzy subset, and a fuzzy ru €). Suppose thay EI&R% search starts. If no committed node satisfies the vigilance criterion
M input variables. Let

(becomegesonany), an uncommitted one is chosen and initialized. If
Wi = (Wily ey Witdy Wikdf1s -y Winhd) a committed node, e.g., thé)th node, is chosen and satisfies the vigi-
vEnr) € [0 1]2M lance criterion, then input weight updating is made

wi =g (x Awd) 4+ (1 - 3) - wi'.

— ’ ’C
= (Uily ooy Uihs Vgqy v ey

be the input weights defining tHé)th hyperbox. Note that}; = 1 —
v;; (complement coding form [19]). 3) Recalculation of Node Activationtf fuzzy ART learning was

As input vectors are presented, hyperboxes are created (which mes$ormed, the node activationd; (=) are recalculated. I5(x) is
that nodes become committed) and expand to cover the input spamshzero, the algorithm carries on to the following steps. Otherwise,
These hyperboxes are fuzzified, forming the implications of the fuzaystops and proceeds to the next input, a case not so unusual during the
rules. The fuzzy implication of th&)th rule is defined byw; andf;, first learning stage.
wheref; is the vector of the slopes of the associated membership func4) Output Calculation: The output value is calculated for each ac-

tions tive rule
fi=(fir. ..oy firas finagr, o ony fizm) € §RiM. If M;(x) > 0.001, yi=ciotenTr+-FavmTiv
Details on the membership functions will be given in the simulatiowherez,, ..., Ty are the input variables,, ..., x after a simple

section. The consequence parts of the fuzzy rules are linear equatidmar transformation, intended to intensify their small “variations” in-
of the input variables (with a bias term), as mentioned above. Let side each fuzzy set. The global output value is the weighted average of
the output values of the activated fuzzy rules

Ci:(CiOan:---767:M)63?M i=1,...,N
. , D ACI N
be the output weights of thg)th fuzzy rule. W et d vl
Outp’ll,t — a. activate rules
C. Learning Parameters and Performance Indices M;(x)
all activated rules
The ART learning parameters are the choicevigilance p, and Mi(x) - s
learning rate3. The learning rate parameters for theule arelry, Al et e ' o
lr2, andlrs, and are associated with the updatingcpfv, andf, re- = 5(;%)
spectively. Allé rule learning rates decrease slowly with time. Another ided th
parameter i$?, which adjusts how often the check for the “worst” fuzz3PrOVI ed that
rule takes place. S(x) = Z M;(x) > 0.

Initialization of these parameters with some standard values is ex- all activated rules
pected to provide acceptable performance. However, optimal setting i%) Training Error and Performance IndexThe training error is the
not a trivial task and usually requires some trial-and-error testing. gesjred output value minus the actual output

The global performance index is tineean square erro(MSE). A
number of local performance indices are kept for each fuzzy rule, uti- error =y — output

lized by the rule splitting procedure. MSEis updated as follows:
D. Main Body of the Algorithm MSE"™" = 0.9995 - MSE®'* +0.0005 - error”.

Letx = (1, ..., 2a) be the input vector at a given time stepThis is a convenient way of storing and updatiMi$SE The factor
andy the associated desired output value. All these variables must®8995 may depend on the task.
normalized to [0,1]. 6) Weight Updating: Only the activated fuzzy rules take part in the
1) Calculation of Node Activation:The first step is to calculate the weight updating procedure. First, the input weights and the slopes of
activation of each committed node for this input vector. L&t ) be the membership functions are updated, according t6 thée. The up-
the fuzzy implication membership function value or firing strength afating equations for one membership function are derived in the Ap-
the (¢)th rule. The rules/nodes whose firing strength(x) is higher pendix, while analytical details can be found in [9]. The output weights
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TABLE |
MEMBERSHIP FUNCTIONS AND FUZZY |IMPLICATIONS

Membership function corresponding to the () th variable of  Fuzzy implication membership function

the (i) th rule of the (i) thrule
1  This fuzzy implication derives directly from fuzzy ART |x A Wi|
values. No membership function can be defined for each M (x) =max(O,1- f; + f; - le " a)
separate input variable. !
2 max(0,1- f3; - (uy —x ;) if (x; <uy) 2Mi(x)=mjin[2“ij(xj)]
2By ;) =4 max(0,1 - fiy 4 5y - (v —xj)), if (xj <) M (x) = H ZHg'(xj)
1, otherwise j
’ 1 i X <X M) =TTsm0x))
l+exP["fij '(xj ‘“y)] J
3Ky (xj) = !
———, otherwise
1+exp[—fis ;- (x5 = vj)]
4 ]+CXP[_f'j.(meanij_ug)],ifx-<x.o,.,, SMi(X)=H4“ij(xj)
1+exp[~f; - (x; —u;)] S j
by (x) = 1+expl—fps ., - (meang; —v{)] ) meany; = (u; +vij)/2
—— , otherwise
T+ expl=/py 0 (5 —¥5)]
3 1 S X <X o 6Mi(x)=H5uy(xj)
_ (d—u;—vy)-{l+exp[-f; - (x; —uy)]} J
shytx,)= i M0 =minfsuy ()]
— otherwise J
(d—uz—vy)-{l+expl—fiprs; - (x5 —vipl}

are also updated according to theule (in this case equivalent to theready calculated in the fuzzy ART module. The output of these func-

LMS algorithm) tions is equal to one when the input vector lies in the associated (crisp)
hyperbox and decrease to zero as the distance between the hyperbox
M;(x) _ : > e .
cij(t+1) = ciy () + lry - o) €T Ti and the input vector pointincreases. This is determined by the values of
(x) |x Aws;| and|w;|: if the input vector is contained in the)th hyperbox,
wherei =0,..., N,j=0,..., M. then|x A w;| = |w;|, otherwisdx A wi| < |wi|. The remaining three

For every rule, there afel possible pairs of fuzzy rules that could re-membership functions are smooth, nonlinear functions, based on the
sult after a potential cut. All the possible consequence parts are trainledjstic function:y = 1/[1 + exp(—=z)]. These functions have higher
in order to obtain tentative performance indices. Fo(thin rule, there computational requirements but in some cases yield better results.
areM x 2 x (M + 1) tentative weightsM possible cuts by two re-  All membership functions apart from the first one apply to one
sulting rules byAf + 1 output weights for each rule. These weights ardimension. The inference methods used to perform fuzzy reasoning in
updated in the same manner as the output weights. Finally, the logare than one dimensions, combining these one-dimensional (1-D)
tentative performance indices and counter are updated. membership functions, are Mamdani’s method (min) and Larsen’s
7) Rule Splitting ProcedureEvery P time steps, all committed method (algebraic product), resulting in the fuzzy implication mem-
nodes are checked and the one with the highest local MSE (worst gaership functions. Product inference usually offered better results. All
formance) is split, provided that it has been activated at [Baghes. membership functions and fuzzy implication membership functions
The best possible cut is determined by the highest tentative perfosed in the simulation are defined in Table I.
mance index. The output weight vectetandcy of the corresponding 1) First Membership Function:The first membership function is
fuzzy rules are initialized with the values of vectarbefore the cut. the simpler membership function, with the fewer degrees of freedom
Finally, all relevant local performance indices and counters are resgfDOF). It is similar to the one used in [18] and gives the membership
8) Rule Adding: If the mean square error exceeds a threshold equadlue of each fuzzy implication directly from the fuzzy ART variable
to 10 - M S E, an uncommitted node is used, and is initialized. This igalues, without the use of any inference method.
actually a safety feature, originating from the fuzzy ARTMAP algo- 2) Second Membership FunctiorThis is a trapezoidal function

rithm [18], [25] having little or no effect in most of the cases. and is used with both min and product inference. The range of
this function is also [0,1]. This membership function has similar
IIl. SIMULATION RESULTS computational requirements (in terms of computer time) with the first

one, but offers better results, since there are more DOF.

3) Third Membership Functionit is the double logistic function,
Five membership functions will be used, combined either with Manie., two logistic functions joined together forming a bell-like curve.
dani’s or Larsen'’s inference methods. The first two membership funthe two logistic functions are allowed to have different slopes. In the

tions are simple, piecewise linear functions, which use quantities ahse of different slopes, the joining point.;.. is the point where the

A. Membership Functions and Inference Methods
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TABLE I
COMPARISON RESULTS PREVIOUS APPROACHES ANDNEUROFAST USING DIFFERENT FUZZY IMPLICATIONS

Model Number identi-  Predi- 50 data
of rules fication ction data randomly
data selected
1 Linear model - 12.7 11.11 -
2 FMM [5] 3 1.5 2.1 4.2
3 SOFIA[7] 4 1.8 29 34
4 FNN Type [ [14] 8 0.84 1.22 -
5 FNN Type 1l [14] 4 0.73 1.28 -
6 FNN Type III [14] 8 0.63 1.25 -
Proposed algorithm number identi- predi- data from the Percentage stopping
membership ofrules fication ctiondata  whole of success- criterion f Ir,
function data domain ful runs )
7 M (x) 2 1.22 2.62 4.33 50% 150000 1 1
8 M (x) 2 1.47 3.24 3.18 65% 100000 1 1
9 M (x) 2 0.76 1.31 2.53 54% 100000 1t 1
10 M (%) 2 0.90 1.45 3.77 100% 30000 2 100
11 M (x) 2 0.79 1.84 6.91 100% 30000 3 100
12 M (x) 2 0.71 1.36 3.03 100% 30000 2 100

N=2, M=3. Averaged over 100 runs. P =5000, =1.7,
=0.0,, £ =01, p =0, /r, =0.1, lr,ﬁ =0.0, Ir, =0.1.

two logistic functions have equal values. A drawback of this membe|
ship function is that it is not normalized, since the logistic functior
never reaches unity or zero.

4) Fourth Membership Functionin an attempt to normalize the
double logistic membership function, each logistic function is divider
by its value at the joining point. In this way, both logistic functions
attain the value of 1 at this point. The joining poinf... is on the
middle between the input weights; andv;; defining the category
(mean;;).

5) Fifth Membership Function:If a category is relatively “small,” g
the corresponding membership function should desirably attain rel =
tively “higher” values, in order to have a considerable contribution tc
the global output value and therefore efficiently learn the function be
havior in its area. Following this idea, the fifth function is not exactly 0 .
a membership function, since its range exceeds unity. This functic 0 5 10 15 20
is the double logistic function divided by a term increasing with the number of rules

width of the function (see Table I). It is noted thashould be larger

than zero. Fig. 1. Mean square errdMSE) of the proposed algorithm applied to the
Box and Jenkins gas furnace process prediction versus the number of fuzzy
rules, using the fuzzy implicatiom\Z (x). Each run lasted approximately 50 000

B. Modeling of a Static Three-Variable Function epochs. All learning parameters are kept fixed, except for the vigilanehich

. o . increases by the number of fuzzy rules= 0.001, 3 = 0.001, p € [0, 0.85],
A three-variable function is learned from a small set of input—output, = 0.5, 1+, = 0.1, andlrs = 100.
data. This function was used as a testing example in [5], [7], [14] and

is defined as

0.03 |

an Square Error

002

001 |

C. Box and Jenkins Gas Furnace Process Modeling

y=(L0+a" +a3' +a27"7)% This is a common benchmark for testing system identification tech-

niques. The data are from a furnace, where air and methane are com-

The system was trained with the same input—output data used in goited. The input feed rate of methane and the concentration ef CO
vious works. In order to avoid overtraining, a system with only twin the output gases are sampled, giving 296 data pairs, which can be
rules was used, while convergence was stopped prematurely. found in [21]. This is a dynamical process with one inp(t) and one

The comparison results appear in Table Il. NeuroFAST perfornesitputy(¢). The aim is to predict current outpytt) using past input
relatively very well, using only two rules. The task is treated as #nd output values, with the lowest mean square error.
it were on-line, while most of the previous approaches used off-line, As in some of the previous approaches, the following six input vari-
trial-and-error methods. However, it is noted that the piecewise linegoles were used:(t — 1), z(t — 2), x(t — 3),y(t — 1), y(t — 2), and
nature of the first three fuzzy implication membership functions doest — 3).
not fit well to this task and sometimes prevents the algorithm from In Fig. 1 is the mean square error obtained versus the number
reaching a satisfactory performance index. of fuzzy rules, using the fuzzy implication membership function
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TABLE Il

COMPARISON RESULTS FOR THEBOX AND JENKINS GAS FURNACE

PROCESSIDENTIFICATION [21]

For each variablg, the weightsw;; andw;s4; and the slopeg;;
and f;nr+; define the membership function associated with this vari-
able. All these parameters should be positive. Besides, < 1 —
win+;. Therefore, thé rule should not be allowed to make an update

Model Number Number Mean . . .
of inputs  of rules  Square that would violate any of these two requirements. Furthermore, for this
Error fuzzy implication, as well as forM (x) and. M (x), the premise pa-
Box and Jenkins [21] 6 - 0.202 rameters are changed only if the current input vegtaoes not lie in
Tong [27] 2 19 0.469 the associated hyperbox, since inside the hyperbox these functions are
;edfg’gz (28] g g; gggg constant. Hence, updating takes place on|yif wi| < |wi].
Sllllg[eno]and Yasukawa [13] 3 o 0:190 Consideringw;;, we use the chain rule
Sugeno and Tanalfa [6] 6 2 0.068 OF OF doutput 93 M;(x)  Oapij
Wang and Langari [30] 6 2 0.066 T doutput R M, (%) ’ Dafisy " ow..
Zikidis and Vasilakos [31] 6 2 0.064 J S Rl J
Lin and Cunningham [16] 3 4 0071 To calculated E/dw;;, we consider each term of the second part.
Kimetal [17] =~ 6 2005 From the cost function
Tzafestas and Zikidis [9] 6 2 0.049
ANFIS (8] taken from [33] 2 25 0.00073 OF
Kim and Kasabov [33] 2 15 0.00042 Toutpul — (y — output) - (1) = —error.
NeuroFAST 6 1 0.06544
NeuroFAST 6 15 0.00040 As mentioned earlier, the output of the algorithm is
NeuroFAST 6 20 0.00001
S Mix) -y S Mix) -y
7, rule 7 active 7, rule 7 active
3 M (x). Comparison results with previous approaches are provided 0utput = : y = - 5(x)
in Table Ill. It is noted that NeuroFAST with 20 rules attains the best ) Z ) Mi(x) ‘
performance reported up to now. It is also worth noting that even with ¢ rule dactive
one rule (6-input linear system) it outperforms many approaches withConsequently
more rules.
Z 3 Mi(x) -y
IV. CONCLUSION g | Foxule b active
S(x)
A new method was proposed for on-line structure and parameter doutput
learning of a functional reasoning fuzzy system. Structure identifica- s Mi(x) 95 M, (x)
tion is executed by a fuzzy ART module. Specific fuzzy rule splitting ‘
and adding procedures, provide better coverage of “difficult” areas of S(x)-yi — Z 3Mp(x) - yi
the input space. Premise and consequent parameters are fine tuned by _ k, rule k active
the use of thé rule. Simulation results demonstrate the remarkable ca- - S(x)?
pabilities of the proposed method.
Future work will be dealing with a metalearning scheme for auto- Z 3 M (x) - yi
matic adjustment of the learning parameters employed in this algo- y; — Lrule kactive
rithm. _ 5(x)
S(x)
APPENDIX doutput y; — output
= =
Consider the cost function 93 Mi(x) S(x)
E(W) =Ly - output)? = ‘537-7-01‘2 Considering the terms M, (x) /92
wherey andoutputare the current desired and actual output of the 23 (%) _ Olopir(we) - o wopij(a)) - ooe - 2pina (21r)]
2ptij () Dapij ()

system andV is a generalized vector containing all free parameters of
the learning process (in our case it should contajie, andf). The aim =opit(w1) - e o1y (i—1)
is to iteratively minimize the cost functiafi( W) over the whole input

space. According to theerule, in order to perform gradient descent, the “2ftisg (@nr)

: 2Ni(j+1)($j+1) T

change to each parameiéf, should be proportional to the negative of s Mi(x)
the gradient of£ (W) with respect tdV}, =
2tij ()
, , OE(W) . _
AW = —Ir - VwE(W) or AW, = —Ir- W Finally, from the definition of i, (x;) (Table I)
//k

wherelr is the learning rate. Oaptij(x;)/Owi; = —fij.
_ Usmg this rule, deriving the updatlng equatlon_s ofthe OUtpUtW.elghtSCombining all the above results

is relatively easy. However, the updating equations of the premise pa-
rameters (input weighter and slope values) are more complex and 0E yi — output  3M;(x)
depend on the membership functions and the inference method. The dw;; = —error: S(x) ' optij ()
study of the input weights updating equation will be made using the . . . .
fuzzy implications M (x), which is a characteristic example and pro- Therefore, the input weight updating rule is
vides flexibility (many adaptive parameters, i.e., DOF and low compu-
tational overhead (no nonlinear calculations).

) (_fiJ)-

yi — output  3Mi(x)
S(x)  apij(zy)

Aw;; = —lry - error -
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For every input variable, only one “side” of the corresponding mem-21] G. E. P. Box and G. M. Jenkingjme Series Analysis, Forecasting, and

bership function is updated: if; < u;; the following two equations | goqtrtl_. (S:anJFrI._a}nciscgzgolsdeg EI>_ayy li70- dantive learm
; em ifC o oc - ; . .-T. Lin, C. -J. Lin, and C. S. G. Lee, “Fuzzy adaptive learning con-
gpply QIrgctIy, otherwise ifj < vi;, j should be replaced by/ + j trol network with on-line neural learningPuzzy Sets Systiol. 71, pp.
in the indices ofr, w, andf. 25_45. 1995,
Following the same lines fof;;, we observe that the only difference [23] C.-J. Lin and C.-T. Lin, “Reinforcement learning for an ART-based
is that the termdop;;(x;)/dfi; is used instead obop;,(z;)/dw,;, fuzzy adaptive learning control networklEEE Trans. Neural Net-
giving the rule works vol. 7, pp. 709-731, June 1996.

[24] C.-J.Linand C. S. G. Le&Neural Fuzzy Systems: A Neuro-Fuzzy Syn-
ergism to Intelligent SystemsEnglewood Cliffs, NJ: Prentice-Hall,
yi — output 3 M;(x) (wiy — ;) 1996.
S(x) spij(zy) 7T [25] G. A. Carpenteet al, “Fuzzy ARTMAP: A neural architecture for in-
cremental supervised learning of analog multidimensional mpEF
Using these guidelines, one can obtain the updating equations fc[)zr6 Trans. Neural Networks/ol. 3, pp. 698-712, Oct. 1992.

each fuzzy implication, which can also be found in [9]. ] JS'eJt'SBSli,(;lﬂ,eé' ‘gsgugpepn()zgg_eg%%mggs are universal controllétszy

[27] R. M. Tong, “The evaluation of fuzzy models derived from experimental
data,”Fuzzy Sets Systol. 4, pp. 1-12, 1980.

Afij = —lrg - error -
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