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NeuroFAST: On-Line Neuro-Fuzzy ART-Based Structure
and Parameter Learning TSK Model

Spyros G. Tzafestas and Konstantinos C. Zikidis

Abstract—NeuroFAST is an on-line fuzzy modeling learning algorithm,
featuring high function approximation accuracy and fast convergence. It is
based on a first-order Takagi–Sugeno–Kang (TSK) model, where the conse-
quence part of each fuzzy rule is a linear equation. Structure identification
is performed by a fuzzy adaptive resonance theory (ART)-like mechanism,
assisted by fuzzy rule splitting and adding procedures. The well known
rule continuously performs parameter identification on both premise and
consequence parameters. Simulation results indicate the potential of the
algorithm. It is worth noting that NeuroFAST achieves a remarkable per-
formance in the Box and Jenkins gas furnace process, outperforming all
previous approaches compared.

Index Terms— rule, fuzzy ART learning, structure/parameter identifi-
cation, Takagi–Sugeno–Kang (TSK) fuzzy reasoning model.

I. INTRODUCTION

Fuzzy set theory [1] was initially proposed as a tool for the expres-
sion and manipulation of human-like, expert knowledge. Combined
with the learning ability of artificial neural networks, it was proved
to be a powerful mathematical construct, enabling the symbolic ex-
pression of machine learning results. In the last few years, the applica-
tion of neuro-fuzzy methods to nonlinear process identification using
input–output (I/O) data is a very active area. A comprehensive survey
can be found in [2], with a plethora of references.

One of the most influential fuzzy reasoning models was proposed
by Takagi and Sugeno in [4]. In this model, the consequent part of
each fuzzy rule is expressed as a linear function of the input variables,
instead of a fuzzy set [3], reducing the number of required fuzzy rules.
Since then, Sugeno and his colleagues established what is called today
theTakagi–Sugeno–Kang(TSK) model [5], [6].

Fuzzy modeling involves structure and parameter identification.
The second is usually (and easily) addressed by some gradient descent
variant, e.g., the least squares algorithm or back-propagation. Struc-
ture identification is a more difficult task, often tackled by off-line,
trial-and-error approaches, like the unbiasedness criterion [5], [7]. One
of the most common methods for structure initialization is uniform
partitioning of each input variable range into fuzzy sets, resulting to a
fuzzy grid. This approach is followed in ANFIS, a well-known TSK
model learning algorithm [8]. In [10]–[12], [20] the TSK model was
used for designing various neurofuzzy controllers.

In the proposed approach, the human way of thinking is exploited
as much as possible, and is incorporated into an automated procedure.
NeuroFAST is a fuzzy modeling learning algorithm based on the TSK
model and features on-line structure and parameter identification, very
good numerical accuracy and fast convergence, for use in supervised,
real time function approximation tasks. The input space is automati-
cally partitioned into fuzzy subsets, using a modified fuzzy ART (adap-
tive resonance theory) [19] mechanism. Fuzzy rules that tend to give
high output error are split in two, by a specific fuzzy rule splitting pro-
cedure, resulting in afuzzy k-d treestructure. To cope with “hard” re-
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gions of extreme nonlinearities, a new fuzzy rule is created wherever
the output error exceeds a dynamic threshold. At the same time, all
adaptive parameters are tuned by the� rule. The proposed algorithm
is an extension to [18], where a fuzzy ARTMAP [25] module was em-
ployed. A more technically detailed presentation of the proposed archi-
tecture appears in [9].

The performance of NeuroFAST is verified by two examples: the
fuzzy modeling of a nonlinear function and the prediction of the Box
and Jenkins gas furnace process [21], a famous benchmark for system
identification algorithms, where NeuroFAST exhibits outstanding per-
formance over other existing methods.

II. PRESENTATION OFNEUROFAST

It is assumed that the input and output variables are known. In this
study, issues concerning the choice of input variables from all possible
variables are not dealt with. For discussions on this subject the reader
is referred to [5], [13], [16], and [32].

A. General Description and Basic Concepts

The core of the present system is the TSK model [4], namely a set
of IF…THEN rules with fuzzy implications and first-order functional
consequence parts, which was proved to be a universal approximator
[26]. The format of the fuzzy ruleRi is

Ri: If x1 isAi1 AND . . . AND xM isAiM

thenyi = ci0 + ci1x1 + � � � + ciMxM :

The number of rules is determined by the user, depending on the task
and the available or expected training data. The algorithm creates linear
models that approximate locally the function to-be-learned. Structure
identification sets a coarse fuzzy partitioning of the domain, while pa-
rameter identification optimally adjusts premise and consequent pa-
rameters.

A modified fuzzy ART mechanism [19] is employed for domain
partitioning. The idea of utilizing fuzzy ART concepts for structure
learning was introduced by Linet al. [22]–[24]. Fuzzy ART is an un-
supervised algorithm, which receives a stream of input patterns and au-
tomatically creates recognition categories or hyperboxes. These recog-
nition categories start as points in the input space and increase in size to
incorporate new points that are presented, until the whole input space
is covered. The maximum size of these hyperboxes and implicitly the
number of the required hyperboxes can be adjusted by a parameter
called “vigilance.” In our case, the input stream is formed by the input
variable vector at every time step. The (crisp) hyperboxes are fuzzified,
providing the implications of the fuzzy rules.

Fuzzy ART does not allow for any dependence on the output error,
and results into a more-or-less uniform hyperbox allocation. This is
not desired, because the function-to-be-learned is not assumed to ex-
hibit uniform “difficulty” in its whole domain. To help the algorithm
learn better in “hard” areas, afuzzy rule splittingtechnique is employed:
periodically, all rules are examined and the rule with the worst local
performance index is split in two rules. By “split” it is meant that the
hyperbox associated with the fuzzy implication of the rule is divided
into two hyperboxes, after aguillotine cutacross one dimension. This
results to afuzzy k-d treestructure. The question that arises is across
which dimension the cut should be made. Various strategies have been
proposed, including thebalanced sampling criterion[15], direct eval-
uation [5] and regional linearity [15], employed in the proposed ap-
proach. The fuzzy rule splitting procedure adds to the algorithm com-
putational complexity and overhead; this is the price for on-line struc-
ture identification.

1083–4419/01$10.00 © 2001 IEEE
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Apart from fuzzy rule splitting, another procedure isfuzzy rule
adding: a new rule is created wherever the output error exceeds a high
threshold.

After all available rules have been used, the rule splitting and adding
procedures are terminated. However, fuzzy ART learning remains ac-
tive as a “watchdog,” preventing uncovering of the input space. The�
rule, which is active from the beginning, continues and fine tunes all
parameters, until the algorithm reaches some stopping criterion.

The presentation of the algorithm will be made through a multi-input
single-output example. A certain familiarity with the fuzzy ART model
[19] is assumed.

B. Adaptive Parameters

The adaptive parameters are: the weights associated with the mem-
bership functions (which will be called input weights), the slopes of
the membership functions, and the weights of the consequence parts
of the rules (which will be called output weights). At the beginning,
there areN uncommitted or available nodes (each node corresponds
to a hyperbox, a fuzzy subset, and a fuzzy rule). Suppose that there are
M input variables. Let

wi =(wi1; . . . ; wiM ; wiM+1; . . . ; wi2M )

= (ui1; . . . ; uiM ; vci1; . . . ; v
c
iM) 2 [0; 1]2M

be the input weights defining the(i)th hyperbox. Note that:vcij = 1�
vij (complement coding form [19]).

As input vectors are presented, hyperboxes are created (which means
that nodes become committed) and expand to cover the input space.
These hyperboxes are fuzzified, forming the implications of the fuzzy
rules. The fuzzy implication of the(i)th rule is defined bywi andfi,
wherefi is the vector of the slopes of the associated membership func-
tions

fi = (fi1; . . . ; fiM ; fiM+1; . . . ; fi2M) 2 <2M
+ :

Details on the membership functions will be given in the simulation
section. The consequence parts of the fuzzy rules are linear equations
of the input variables (with a bias term), as mentioned above. Let

ci = (ci0; ci1; . . . ; ciM ) 2 <M i = 1; . . . ; N

be the output weights of the(i)th fuzzy rule.

C. Learning Parameters and Performance Indices

The ART learning parameters are the choice�, vigilance�, and
learning rate�. The learning rate parameters for the� rule arelr1,
lr2, andlr3, and are associated with the updating ofc, w, andf , re-
spectively. All� rule learning rates decrease slowly with time. Another
parameter isP , which adjusts how often the check for the “worst” fuzzy
rule takes place.

Initialization of these parameters with some standard values is ex-
pected to provide acceptable performance. However, optimal setting is
not a trivial task and usually requires some trial-and-error testing.

The global performance index is themean square error(MSE). A
number of local performance indices are kept for each fuzzy rule, uti-
lized by the rule splitting procedure.

D. Main Body of the Algorithm

Let x = (x1; . . . ; xM ) be the input vector at a given time step
andy the associated desired output value. All these variables must be
normalized to [0,1].

1) Calculation of Node Activation:The first step is to calculate the
activation of each committed node for this input vector. LetMi(x) be
the fuzzy implication membership function value or firing strength of
the (i)th rule. The rules/nodes whose firing strengthMi(x) is higher

than a small fixed threshold, e.g., 0.001, are activated and take part in
output calculation and weight updating. All other nodes remain idle
and are ignored. The sum of all rule firing strengths is defined as

S(x) =
all activated rules

Mi(x):

If S(x) is zero (which means that there are no active rules), the al-
gorithm imperatively performs fuzzy ART learning (hyperbox expan-
sion/creation) to incorporate this “new” input vector. In order to pre-
vent possible uncovering of input space, fuzzy ART learning is called
for even ifS(x) is below a certain level (set to 0.1).

2) Fuzzy ART Learning:During the first learning stage or when-
ever the sum of the rule firing strengths is low, the fuzzy ART mecha-
nism operates as follows [19].

The choice functionof every committed node is calculated:jx ^
wij=(� + jwij). The node with the highest choice value is selected.
If node i is selected, thematch functionjx ^ wij=jxj is calculated.
This value is compared to the vigilance�. If jx ^ wij=M < �, mis-
match resetoccurs, the choice value of this category is set to�1, and a
new search starts. If no committed node satisfies the vigilance criterion
(becomesresonant), an uncommitted one is chosen and initialized. If
a committed node, e.g., the(i)th node, is chosen and satisfies the vigi-
lance criterion, then input weight updating is made

w
new

i = � � (x ^w
old

i ) + (1� �) �wold

i :

3) Recalculation of Node Activation:If fuzzy ART learning was
performed, the node activationsMi(x) are recalculated. IfS(x) is
nonzero, the algorithm carries on to the following steps. Otherwise,
it stops and proceeds to the next input, a case not so unusual during the
first learning stage.

4) Output Calculation: The output value is calculated for each ac-
tive rule

If Mi(x) > 0:001; yi = ci0 + ci1x1 + � � �+ ciMxiM

wherex1; . . . ; xM are the input variablesx1; . . . ; xM after a simple
linear transformation, intended to intensify their small “variations” in-
side each fuzzy set. The global output value is the weighted average of
the output values of the activated fuzzy rules

output = all activated rules

Mi(x) � yi

all activated rules

Mi(x)

= all activated rules

Mi(x) � yi

S(x)

provided that

S(x) =
all activated rules

Mi(x) > 0:

5) Training Error and Performance Index:The training error is the
desired output value minus the actual output

error = y � output

MSEis updated as follows:

MSEnew = 0:9995 �MSEold + 0:0005 � error2:

This is a convenient way of storing and updatingMSE. The factor
0.9995 may depend on the task.

6) Weight Updating: Only the activated fuzzy rules take part in the
weight updating procedure. First, the input weights and the slopes of
the membership functions are updated, according to the� rule. The up-
dating equations for one membership function are derived in the Ap-
pendix, while analytical details can be found in [9]. The output weights
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TABLE I
MEMBERSHIPFUNCTIONS AND FUZZY IMPLICATIONS

are also updated according to the� rule (in this case equivalent to the
LMS algorithm)

cij(t+ 1) = cij(t) + lr1 �

Mi(x)

S(x)
� error � xj

wherei = 0; . . . ; N , j = 0; . . . ; M .
For every rule, there areM possible pairs of fuzzy rules that could re-

sult after a potential cut. All the possible consequence parts are trained,
in order to obtain tentative performance indices. For the(i)th rule, there
areM � 2 � (M + 1) tentative weights:M possible cuts by two re-
sulting rules byM +1 output weights for each rule. These weights are
updated in the same manner as the output weights. Finally, the local
tentative performance indices and counter are updated.

7) Rule Splitting Procedure:Every P time steps, all committed
nodes are checked and the one with the highest local MSE (worst per-
formance) is split, provided that it has been activated at leastP times.
The best possible cut is determined by the highest tentative perfor-
mance index. The output weight vectorsci andck of the corresponding
fuzzy rules are initialized with the values of vectorci before the cut.
Finally, all relevant local performance indices and counters are reset.

8) Rule Adding: If the mean square error exceeds a threshold equal
to 10 �MSE, an uncommitted node is used, and is initialized. This is
actually a safety feature, originating from the fuzzy ARTMAP algo-
rithm [18], [25] having little or no effect in most of the cases.

III. SIMULATION RESULTS

A. Membership Functions and Inference Methods

Five membership functions will be used, combined either with Mam-
dani’s or Larsen’s inference methods. The first two membership func-
tions are simple, piecewise linear functions, which use quantities al-

ready calculated in the fuzzy ART module. The output of these func-
tions is equal to one when the input vector lies in the associated (crisp)
hyperbox and decrease to zero as the distance between the hyperbox
and the input vector point increases. This is determined by the values of
jx^wij andjwij: if the input vector is contained in the(i)th hyperbox,
thenjx^wij = jwij, otherwisejx^wij < jwij. The remaining three
membership functions are smooth, nonlinear functions, based on the
logistic function:y = 1=[1 + exp(�x)]. These functions have higher
computational requirements but in some cases yield better results.

All membership functions apart from the first one apply to one
dimension. The inference methods used to perform fuzzy reasoning in
more than one dimensions, combining these one-dimensional (1-D)
membership functions, are Mamdani’s method (min) and Larsen’s
method (algebraic product), resulting in the fuzzy implication mem-
bership functions. Product inference usually offered better results. All
membership functions and fuzzy implication membership functions
used in the simulation are defined in Table I.

1) First Membership Function:The first membership function is
the simpler membership function, with the fewer degrees of freedom
(DOF). It is similar to the one used in [18] and gives the membership
value of each fuzzy implication directly from the fuzzy ART variable
values, without the use of any inference method.

2) Second Membership Function:This is a trapezoidal function
and is used with both min and product inference. The range of
this function is also [0,1]. This membership function has similar
computational requirements (in terms of computer time) with the first
one, but offers better results, since there are more DOF.

3) Third Membership Function:It is the double logistic function,
i.e., two logistic functions joined together forming a bell-like curve.
The two logistic functions are allowed to have different slopes. In the
case of different slopes, the joining pointxjoin is the point where the
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TABLE II
COMPARISONRESULTS: PREVIOUS APPROACHES ANDNEUROFAST USING DIFFERENTFUZZY IMPLICATIONS

two logistic functions have equal values. A drawback of this member-
ship function is that it is not normalized, since the logistic function
never reaches unity or zero.

4) Fourth Membership Function:In an attempt to normalize the
double logistic membership function, each logistic function is divided
by its value at the joining point. In this way, both logistic functions
attain the value of 1 at this point. The joining pointxjoin is on the
middle between the input weightsuij andvij defining the category
(meanij ).

5) Fifth Membership Function:If a category is relatively “small,”
the corresponding membership function should desirably attain rela-
tively “higher” values, in order to have a considerable contribution to
the global output value and therefore efficiently learn the function be-
havior in its area. Following this idea, the fifth function is not exactly
a membership function, since its range exceeds unity. This function
is the double logistic function divided by a term increasing with the
width of the function (see Table I). It is noted thatd should be larger
than zero.

B. Modeling of a Static Three-Variable Function

A three-variable function is learned from a small set of input–output
data. This function was used as a testing example in [5], [7], [14] and
is defined as

y = (1:0 + x
0:5
1 + x

�1

2 + x
�1:5
3 )2:

The system was trained with the same input–output data used in pre-
vious works. In order to avoid overtraining, a system with only two
rules was used, while convergence was stopped prematurely.

The comparison results appear in Table II. NeuroFAST performs
relatively very well, using only two rules. The task is treated as if
it were on-line, while most of the previous approaches used off-line,
trial-and-error methods. However, it is noted that the piecewise linear
nature of the first three fuzzy implication membership functions does
not fit well to this task and sometimes prevents the algorithm from
reaching a satisfactory performance index.

Fig. 1. Mean square error(MSE) of the proposed algorithm applied to the
Box and Jenkins gas furnace process prediction versus the number of fuzzy
rules, using the fuzzy implicationM(x). Each run lasted approximately 50 000
epochs. All learning parameters are kept fixed, except for the vigilance�, which
increases by the number of fuzzy rules:� = 0:001, � = 0:001, � 2 [0; 0:85],
lr = 0:5, lr = 0:1, andlr = 100.

C. Box and Jenkins Gas Furnace Process Modeling

This is a common benchmark for testing system identification tech-
niques. The data are from a furnace, where air and methane are com-
bined. The input feed rate of methane and the concentration of CO2

in the output gases are sampled, giving 296 data pairs, which can be
found in [21]. This is a dynamical process with one inputx(t) and one
outputy(t). The aim is to predict current outputy(t) using past input
and output values, with the lowest mean square error.

As in some of the previous approaches, the following six input vari-
ables were used:x(t� 1), x(t� 2), x(t� 3), y(t� 1), y(t� 2), and
y(t � 3).

In Fig. 1 is the mean square error obtained versus the number
of fuzzy rules, using the fuzzy implication membership function
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TABLE III
COMPARISON RESULTS FOR THEBOX AND JENKINS GAS FURNACE

PROCESSIDENTIFICATION [21]

3M(x). Comparison results with previous approaches are provided
in Table III. It is noted that NeuroFAST with 20 rules attains the best
performance reported up to now. It is also worth noting that even with
one rule (6-input linear system) it outperforms many approaches with
more rules.

IV. CONCLUSION

A new method was proposed for on-line structure and parameter
learning of a functional reasoning fuzzy system. Structure identifica-
tion is executed by a fuzzy ART module. Specific fuzzy rule splitting
and adding procedures, provide better coverage of “difficult” areas of
the input space. Premise and consequent parameters are fine tuned by
the use of the� rule. Simulation results demonstrate the remarkable ca-
pabilities of the proposed method.

Future work will be dealing with a metalearning scheme for auto-
matic adjustment of the learning parameters employed in this algo-
rithm.

APPENDIX

Consider the cost function

E(W) = 1
2
(y � output)2 = 1

2
error

2

wherey andoutput are the current desired and actual output of the
system andW is a generalized vector containing all free parameters of
the learning process (in our case it should containw, c, andf ). The aim
is to iteratively minimize the cost functionE(W) over the whole input
space. According to the� rule, in order to perform gradient descent, the
change to each parameterWk should be proportional to the negative of
the gradient ofE(W) with respect toWk

�W = �lr � rWE(W) or �Wk = �lr �
@E(W)

@Wk

wherelr is the learning rate.
Using this rule, deriving the updating equations of the output weights

is relatively easy. However, the updating equations of the premise pa-
rameters (input weightsw and slope valuesf ) are more complex and
depend on the membership functions and the inference method. The
study of the input weights updating equation will be made using the
fuzzy implication3M(x), which is a characteristic example and pro-
vides flexibility (many adaptive parameters, i.e., DOF and low compu-
tational overhead (no nonlinear calculations).

For each variablej, the weightswij andwiM+j and the slopesfij
andfiM+j define the membership function associated with this vari-
able. All these parameters should be positive. Besides,wij � 1 �
wiM+j . Therefore, the� rule should not be allowed to make an update
that would violate any of these two requirements. Furthermore, for this
fuzzy implication, as well as for1M(x) and2M(x), the premise pa-
rameters are changed only if the current input vectorx does not lie in
the associated hyperbox, since inside the hyperbox these functions are
constant. Hence, updating takes place only ifjx ^wij < jwij.

Consideringwij , we use the chain rule

@E

@wij

=
@E

@output
�
@output

@3Mi(x)
�
@3Mi(x)

@2�ij
�
@2�ij
@wij

:

To calculate@E=@wij , we consider each term of the second part.
From the cost function

@E

@output
= (y � output) � (�1) = �error :

As mentioned earlier, the output of the algorithm is

output =
i; rule i active

Mi(x) � yi

i; rule i active

Mi(x)
=

i; rule i active

Mi(x) � yi

S(x)
:

Consequently

@output

@3Mi(x)
=

@
k; rule k active

3Mk(x) � yk

S(x)

@3Mi(x)

=

S(x) � yi �
k; rule k active

3Mk(x) � yk

S(x)2

=

yi �
k; rule k active

3Mk(x) � yk

S(x)

S(x)

)
@output

@3Mi(x)
=

yi � output

S(x)
:

Considering the term@3Mi(x)=@2�ij

@3Mi(x)

@2�ij(xj)
=
@[2�i1(x1) � � � � � 2�ij(xj) � � � � � 2�iM (xM)]

@2�ij(xj)

= 2�i1(x1) � � � � � 2�i(j�1)(xj�1)

� 2�i(j+1)(xj+1) � � � � � 2�iM (xM)

=
3Mi(x)

2�ij(xj)
:

Finally, from the definition of2�ij(xj) (Table I)

@2�ij(xj)=@wij = �fij :

Combining all the above results

@E

@wij

= �error �
yi � output

S(x)
�

3Mi(x)

2�ij(xj)
� (�fij):

Therefore, the input weight updating rule is

�wij = �lr2 � error �
yi � output

S(x)
�

3Mi(x)

2�ij(xj)
� fij :
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For every input variable, only one “side” of the corresponding mem-
bership function is updated: ifxj < uij the following two equations
apply directly, otherwise ifxc

j < vcij , j should be replaced byM + j
in the indices ofx, w, andf .

Following the same lines forfij , we observe that the only difference
is that the term@2�ij(xj)=@fij is used instead of@2�ij(xj)=@wij ,
giving the rule

�fij = �lr3 � error �
yi � output

S(x)
�

3Mi(x)

2�ij(xj)
� (wij � xj):

Using these guidelines, one can obtain the updating equations for
each fuzzy implication, which can also be found in [9].
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Control of Uncertain Dynamical Fuzzy Discrete-Time
Systems

S. G. Cao, N. W. Rees, and G. Feng

Abstract—A new kind of dynamical fuzzy model is proposed to repre-
sent discrete-time complex systems which include both linguistic informa-
tion and system uncertainties. A new stability analysis and control system
design approach is then developed for this kind of dynamical fuzzy model.
Furthermore, a constructive algorithm is developed to obtain the feed-
back control law. An example is given to illustrate the application of the
method.

Index Terms—Control theory, fuzzy control system design, fuzzy sys-
tems.

I. INTRODUCTION

Recently, there have been a number of applications of fuzzy systems
theory in the control field. In most of these applications, the main de-
sign objective is to construct a fuzzy model to approximate a desired
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